这项工作的目的是通过根据求职者的简历提供无偏见的工作建议来帮助减轻已经存在的性别工资差距。我们采用生成的对抗网络来从12m职位空缺文本和900k简历的Word2VEC表示中删除性别偏见。我们的结果表明,由招聘文本创建的表示形式包含算法偏见,并且这种偏见会对推荐系统产生实际后果。在没有控制偏见的情况下,建议妇女在我们的数据中薪水明显降低。有了对手公平的代表,这种工资差距消失了,这意味着我们的辩护工作建议减少了工资歧视。我们得出的结论是,单词表示形式的对抗性偏见可以增加系统的真实世界公平性,因此可能是创建公平感知推荐系统的解决方案的一部分。
translated by 谷歌翻译
The cooperation of a human pilot with an autonomous agent during flight control realizes parallel autonomy. A parallel-autonomous system acts as a guardian that significantly enhances the robustness and safety of flight operations in challenging circumstances. Here, we propose an air-guardian concept that facilitates cooperation between an artificial pilot agent and a parallel end-to-end neural control system. Our vision-based air-guardian system combines a causal continuous-depth neural network model with a cooperation layer to enable parallel autonomy between a pilot agent and a control system based on perceived differences in their attention profile. The attention profiles are obtained by computing the networks' saliency maps (feature importance) through the VisualBackProp algorithm. The guardian agent is trained via reinforcement learning in a fixed-wing aircraft simulated environment. When the attention profile of the pilot and guardian agents align, the pilot makes control decisions. If the attention map of the pilot and the guardian do not align, the air-guardian makes interventions and takes over the control of the aircraft. We show that our attention-based air-guardian system can balance the trade-off between its level of involvement in the flight and the pilot's expertise and attention. We demonstrate the effectivness of our methods in simulated flight scenarios with a fixed-wing aircraft and on a real drone platform.
translated by 谷歌翻译
Language modeling, a central task in natural language processing, involves estimating a probability distribution over strings. In most cases, the estimated distribution sums to 1 over all finite strings. However, in some pathological cases, probability mass can ``leak'' onto the set of infinite sequences. In order to characterize the notion of leakage more precisely, this paper offers a measure-theoretic treatment of language modeling. We prove that many popular language model families are in fact tight, meaning that they will not leak in this sense. We also generalize characterizations of tightness proposed in previous works.
translated by 谷歌翻译
After just a few hundred training updates, a standard probabilistic model for language generation has likely not yet learnt many semantic or syntactic rules of natural language, which inherently makes it difficult to estimate the right probability distribution over next tokens. Yet around this point, these models have identified a simple, loss-minimising behaviour: to output the unigram distribution of the target training corpus. The use of such a crude heuristic raises the question: Rather than wasting precious compute resources and model capacity for learning this strategy at early training stages, can we initialise our models with this behaviour? Here, we show that we can effectively endow our model with a separate module that reflects unigram frequency statistics as prior knowledge. Standard neural language generation architectures offer a natural opportunity for implementing this idea: by initialising the bias term in a model's final linear layer with the log-unigram distribution. Experiments in neural machine translation demonstrate that this simple technique: (i) improves learning efficiency; (ii) achieves better overall performance; and (iii) appears to disentangle strong frequency effects, encouraging the model to specialise in non-frequency-related aspects of language.
translated by 谷歌翻译
Recent developments of advanced driver-assistance systems necessitate an increasing number of tests to validate new technologies. These tests cannot be carried out on track in a reasonable amount of time and automotive groups rely on simulators to perform most tests. The reliability of these simulators for constantly refined tasks is becoming an issue and, to increase the number of tests, the industry is now developing surrogate models, that should mimic the behavior of the simulator while being much faster to run on specific tasks. In this paper we aim to construct a surrogate model to mimic and replace the simulator. We first test several classical methods such as random forests, ridge regression or convolutional neural networks. Then we build three hybrid models that use all these methods and combine them to obtain an efficient hybrid surrogate model.
translated by 谷歌翻译
The material science literature contains up-to-date and comprehensive scientific knowledge of materials. However, their content is unstructured and diverse, resulting in a significant gap in providing sufficient information for material design and synthesis. To this end, we used natural language processing (NLP) and computer vision (CV) techniques based on convolutional neural networks (CNN) to discover valuable experimental-based information about nanomaterials and synthesis methods in energy-material-related publications. Our first system, TextMaster, extracts opinions from texts and classifies them into challenges and opportunities, achieving 94% and 92% accuracy, respectively. Our second system, GraphMaster, realizes data extraction of tables and figures from publications with 98.3\% classification accuracy and 4.3% data extraction mean square error. Our results show that these systems could assess the suitability of materials for a certain application by evaluation of synthesis insights and case analysis with detailed references. This work offers a fresh perspective on mining knowledge from scientific literature, providing a wide swatch to accelerate nanomaterial research through CNN.
translated by 谷歌翻译
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs). Quantization is a technique for making neural networks more efficient by running them using low-bit integer arithmetic and is therefore commonly adopted in industry. Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization, and certification of the quantized representation is necessary to guarantee robustness. In this work, we present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs. Inspired by advances in robust learning of non-quantized networks, our training algorithm computes the gradient of an abstract representation of the actual network. Unlike existing approaches, our method can handle the discrete semantics of QNNs. Based on QA-IBP, we also develop a complete verification procedure for verifying the adversarial robustness of QNNs, which is guaranteed to terminate and produce a correct answer. Compared to existing approaches, the key advantage of our verification procedure is that it runs entirely on GPU or other accelerator devices. We demonstrate experimentally that our approach significantly outperforms existing methods and establish the new state-of-the-art for training and certifying the robustness of QNNs.
translated by 谷歌翻译
游戏理论运动计划者是控制多个高度交互式机器人系统的有效解决方案。大多数现有的游戏理论规划师不切实际地假设所有代理都可以使用先验的目标功能知识。为了解决这个问题,我们提出了一个容忍度的退缩水平游戏理论运动计划者,该计划者利用了与意图假设的可能性相互交流。具体而言,机器人传达其目标函数以结合意图。离散的贝叶斯过滤器旨在根据观察到的轨迹与传达意图的轨迹之间的差异来实时推断目标。在仿真中,我们考虑了三种安全至关重要的自主驾驶场景,即超车,车道交叉和交叉点,以证明我们计划者在存在通信网络中存在错误的传输情况下利用替代意图假设来产生安全轨迹的能力。
translated by 谷歌翻译
线性状态空间模型(SSM)的状态过渡矩阵的适当参数化,然后是标准非线性,使他们能够从顺序数据中有效地学习表示形式,从。在本文中,我们表明,当线性液体时恒定(LTC)状态空间模型给出诸如S4之类的结构SSM时,我们可以进一步改善。 LTC神经网络是带有输入依赖性状态过渡模块的因果连续神经网络,这使他们学会在推理时适应传入的输入。我们表明,通过使用对角和S4中引入的状态过渡矩阵的对角线加低级分解以及一些简化的基于LTC的结构状态空间模型(称为Liquid-S4)实现了新的最新最先进的最先进跨序列建模任务具有长期依赖性(例如图像,文本,音频和医疗时间序列)的艺术概括,在远程竞技场基准中的平均性能为87.32%。在完整的原始语音命令识别中,数据集Liquid-S4的精度达到96.78%,与S4相比,参数计数降低了30%。性能的额外增益是液体-S4的核结构的直接结果,该结构考虑了训练和推理过程中输入序列样本的相似性。
translated by 谷歌翻译
卵巢癌是最致命的妇科恶性肿瘤。该疾病在早期阶段最常是无症状的,其诊断依赖于经阴道超声图像的专家评估。超声是表征附加质量的一线成像方式,它需要大量的专业知识,其分析是主观的和劳动的,因此易于误差。因此,在临床实践中需要进行自动化的过程,以促进和标准化扫描评估。使用监督的学习,我们证明了附加质量的分割是可能的,但是,患病率和标签不平衡限制了代表性不足的类别的性能。为了减轻这种情况,我们应用了一种新颖的病理学数据合成器。我们通过使用Poisson图像编辑将较少常见的质量整合到其他样品中,从而创建及其相应的地面真实分割的合成医学图像。我们的方法在所有班级中都取得了最佳性能,包括与NNU-NET基线方法相比,提高了多达8%。
translated by 谷歌翻译